NEW UNDERGRADUATE COURSES

ENH 230 Introduction to Language
4 hours; 4 credits
This course is an introduction to the study of language. It explores the following relationships: language and society, language and culture, language and thought, language and biology.
Prerequisite: ENG 151
Meets the general education requirement in Textual, Aesthetic, and Linguistic Analysis.

MKT 360 Internet Marketing
4 hours; 4 credits
This course is an introduction to the use of the Internet and electronic commerce as a marketing tool. A major team project will require students to develop a marketing plan along with a Website for a new or existing product or service. Data collection as well as legal and ethical issues, including security, surrounding commerce in a Web-mediated environment will be discussed.
Prerequisites: MKT 111, BUS 150/CSC102 or permission of the instructor

SPN 352 Studies in Spanish American Literature and Culture I
4 hours; 4 credits
Intensive study of selected topics in Spanish American literature and culture. The specific emphasis will vary from semester to semester and will be announced in the Schedule of Classes.
Prerequisite: SPN 313

SPN 452 Studies in Spanish American Literature and Culture II
4 hours; 4 credits
Intensive study of selected topics in Spanish American literature and culture. The specific emphasis will vary from semester to semester and will be announced in the Schedule of Classes.
Prerequisite: SPN 313

SPN 359 Studies in Peninsular Spanish Literature and Culture I
4 hours; 4 credits
Intensive study of selected topics in Peninsular Spanish literature and culture. The specific emphasis will vary from semester to semester and will be announced in the Schedule of Classes.
Prerequisite: SPN 313

SPN 459 Studies in Peninsular Spanish Literature and Culture II
4 hours; 4 credits
Intensive study of selected topics in Peninsular Spanish literature and culture. The specific emphasis will vary from semester to semester and will be announced in the Schedule of Classes.
Prerequisite: SPN 313
Changes to Courses:
Changes are in bold type

ACC 114 Introduction to Accounting I
Prerequisite: MTH 030 or an appropriate score on the CUNY Mathematics Assessment Test, and successful completion of the C/ACT Writing Skills test, and C/ACT Reading Sample Test or the equivalent.

CIN 210 Film Theory
Study of film theory and its relation to international cinema of the silent and sound periods. Readings include the major theoretical works of various critics, philosophers, and filmmakers. Required for the Cinema Studies major.

CIN 220 Film History
Survey history of world cinemas. The course will consider research practices, historiography, film style, and industrial models of production; viewing and discussion of films by various American and international filmmakers. Required for the Cinema Studies major.

CSC/MTH 228 Discrete Mathematical Structures for Computer Science
An intermediate-level programming and discrete mathematics course where concepts of discrete structures will be applied to computer science. Topics include elementary set theory, logic, functions, relations, Boolean algebra, elements of graph theory, matrix representation of graphs, and matrix manipulations. Programming projects will be related to mathematical topics. Compound data types, recursive programming and mathematical induction will be introduced.

CSC 382 Analysis of Algorithms
Algorithm development, including running time analysis and correctness arguments. Topics include: asymptotic notation and complexity analysis; use of mathematical techniques to determine the computational complexity of algorithms such as sorting and searching. The course provides an introduction and analysis of elementary graph algorithms and programming techniques such as greedy, backtracking, and dynamic programming. Projects will be assigned to correlate the computational complexity and real-time execution time of the algorithms. Prerequisites: CSC 326 and MTH 311

CSC 430 Software Engineering
3 class hours, 2 laboratory hours; 4 credits
CSC 470 Introductory Computer Graphics

Introduction to the basic concepts and techniques of interactive computer graphics including the hardware and software components of computer graphics systems and mathematical handling of graphical objects. Algorithms for two-dimensional and three-dimensional graphics: windowing, clipping, and transformations. Viewing with parallel and perspective projections. Possible additional topics include: curves and surface modeling; realistic rendering (shading with illumination and material, shadowing, reflection, and surface texturing).

EDC 217 Affective Development of the Child

An examination of the relationship between the infant and the primary caretaker, and its importance in personality development. Influences on the primary relation, broadening of affectional ties; comparison of child rearing across and within cultures. Students learn to use a variety of observational approaches and recording techniques to increase their understanding of children who are developing normally and children with disturbances in development. School and community partnerships are explored for their emotional impact on children. Diverse infant and toddler programs are studied through 20 hours of fieldwork.

EDC 218 Language Development through an Integrated Curriculum

Prerequisites: EDC 215 and EDC 216, or EDE 200 and EDE 260, and a GPA of 2.75 or above.
Corequisite: EDC 350

EDC 350 Fieldwork in Preschool Classrooms

This field-based course introduces students to preschool classrooms in diverse and inclusive settings. This course connects practice with prior education coursework and is especially related to the content of EDC 218 Language Development through an Integrated Curriculum. In addition, students are given opportunities both to observe and to practice long- and short-term curriculum planning that reflects specific provisioning for children with special needs and linguistically diverse children. Students also practice a variety of observational approaches and recording techniques in order to assess the development of individual children. Students are observed interacting with small and larger groupings of children. Alcohol, tobacco, and drug abuse, and other dangers to children are discussed within the context of pre-natal and infant development with specific attention paid to the teacher's role and responsibilities. Students will be in attendance at the assigned school three mornings a week for a full semester, which accounts for 150 hours of fieldwork prior to student teaching. Grade Pass (P) or Fail (F).
Prerequisites: EDC 215, EDC 216, and a GPA of 2.75 or above
Corequisite: EDC 218
EDC 360 **Workshop in Social Studies and the Expressive Arts**
An investigation of how multicultural imaginative historical narratives can be used as an ongoing structure within early primary grades to foster students’ intellectual development in diverse and inclusive educational settings. To create these instructional materials, students will use the Internet and other media for educational applications. **Formal and informal assessment tools as well as classroom management strategies for whole class and small group interaction are presented.** Particular attention is paid to fostering **community relations.** The course will offer students opportunities to develop the skills of history storytelling and facilitating discussions **that provoke children’s imaginative and problem solving responses.** Opportunities will also be given to develop history storytelling units that offer young children multiple media to represent thought. **Workshops in creative /dramatics and the plastic arts are explored to promote young children's expressiveness and creativity.**

EDC 440 **Student Teaching in Kindergarten and Early Primary Classrooms**
Practice and problem solving in **kindergarten and early primary** classrooms. Designed for public schools. Students will be in attendance at the assigned school **25 hours a week for a complete semester for a minimum of 350 hours (175 hours in a kindergarten classroom and 175 hours in an early primary grade classroom).** Students will be observed provisioning and interacting with small and larger groupings of children. Application for a student teaching assignment must be completed and filed with the Student Teaching Office the semester preceding the semester in which the student plans to student teach. Students must also submit three letters of recommendation from full-time Education faculty. Graded Pass (P) or Fail (F).

ELT 101 **Introduction to Measurements and Instrumentation
(Formerly ENT 101)

ELT 224 **Electrical Circuit Analysis
Pre- or corequisites: MTH 030 and either ELT 101 or ELT 102; or MTH 123

ENL 302 **Oral Interpretation of Literature
Pre- or corequisite: An ENH 200-level course

ENS 100 **Introduction to Engineering
Introduction to **engineering** disciplines, organizations, and ethics; basic engineering parameters; engineering standards and codes, principles for engineering data acquisition and presentations, and effective experimentation; engineering statistics and data analysis; problem solving and case studies illustrating engineering solutions.
ENS 110 Engineering Graphics
(Formally ENT 110)
Prerequisite: Appropriate scores on the CUNY Skills Assessment Tests

ENS 220 Introduction to Computer Engineering
Prerequisite: ENS 100
Pre- or corequisite: CSC 126

ENS 250 Engineering Mechanics
Prerequisites: ENS 100; PHY 120 and PHY 121, or PHY 230
Pre- or corequisite: MTH 233

ENS 241 Electrical and Electronic Circuits
(Formally ENS 340)
Prerequisites: ENS 100, PHY 160, and MTH 232

ENS/PHY 356 Theory of Electromagnetic Radiation
Prerequisites: PHY 160 and CSC 126
Pre- or corequisite: MTH 330

ENS 471 Control Systems
(Formally ENS 370)
Prerequisites: ENS 241, ENS 310, ENS 336, and MTH 330

ENS/PHY 485 Properties of Materials
(Formally ENS/PHY 385)

ENS 420 Analog and Digital Systems Design
Prerequisite: ENS 220 and ENS 241

ENS 422 Signals and Noise
Prerequisite: ENS 241 and senior-level status or permission of instructor
ENS 331 Digital Signal Processing
(Formerly ENS 430)
Prerequisites: ENS 221 or CSC 347; and MTH 232

ENS 432 Digital and Analog Communication Systems
Prerequisite: ENS 241 and senior-level status, or permission of instructor

ENS 341 Electrical Network Analysis
(Formerly ENS 440 Network Theory)
Power and three-phase circuits, power transmission, and transformers. Review of Convolution.
Prerequisite: ENS 241
Pre- or corequisite: MTH 330

ENS 436 Electric Energy Systems
Prerequisite: ENS 241
Pre- or corequisite: MTH 330

HST 213 Chinese Civilization
For History majors and minors, this is designated as either a pre-1700 History course or a World history course.

HST 290 The West and the World: Africa Encounters Europe
For History majors and minors, this is designated as a World history course.

HST 291 The West and the World: The Americas Encounter Europe
For History majors and minors, this is designated as a World history course.

HST 292 The West and the World: Cross-Cultural Encounters in the Medieval World
For History majors and minors, this is designated as a World history course.

MGT 210 Management Process
(Formerly MGT 310)

MTH/CSC 228 Discrete Mathematical Structures for Computer Science
An intermediate-level programming and discrete mathematics course where concepts of discrete structures will be applied to computer science. Topics include
elementary set theory, logic, functions, relations, Boolean algebra, elements of graph theory, matrix representation of graphs, and matrix manipulations. Programming projects will be related to mathematical topics. Compound data types, recursive programming, and mathematical induction will be introduced.

PHY/
ENS 485 Properties of Materials
(Formally ENS/PHY 385)

POL 229 Law, Justice, and Politics
(Formally LGS 230)
4 hours; 4 credits
The course looks at law as a political instrument, politics in legislation, structure of politics, including government and political parties; surveys the basic documents of the American judicial system. Current political events, national and local, are examined in the light of legal principles.
Prerequisites: ENG 111, COR 100

POL 237 Criminal Courts and Defendants’ Rights
(Formally LGS 260)
4 hours; 4 credits
This course deals with the purposes and aims of the criminal justice and the criminal court system. It examines law enforcement arraignments and bail, the legal profession, plea bargaining, and sentencing. The structure, concepts, and theories of criminal law are studied and a comparison is made between the adversary and inquisitorial systems.
Prerequisites: ENG 111, COR 100

CHANGES IN DEGREE REQUIREMENT
Changes shown in bold type

BIOLOGY
Biology BS

addition of courses to the offerings that fulfill the requirements for the major.
Option I — Biology
Major Requirements: 63 credits
A minimum grade of C is required for a biology course to be used to satisfy a prerequisite for a biology course required for the major requirements for the BS in Biology.
A. Required courses
 BIO 205 General Physiology 4 credits
 BIO 312 Genetics 4 credits
 BIO 322 Evolution 4 credits
 BIO 352 Cell Biology 4 credits
 or
 BIO 360 Ecology 4 credits
B. One of the following courses: 4 credits
 BIO 370 Biochemistry
 BIO 372 Cell Biochemistry
 BIO 213 Comparative Vertebrate Anatomy
 BIO 215 Invertebrate Zoology and Paleontology
 BIO 228 Botany
C. One advanced six-hour laboratory course from the following: 3 credits
 BIO 424 Molecular Biology and Biotechnology Laboratory
 BIO 450 Experimental Methods in Animal Physiology
 BIO 452 Experimental Methods in Behavioral Biology
 BIO 454 Advanced Methods in Cell Biology
 BIO 456 Experimental Methods in Ecology
 BIO 458 Experimental Methods in Cell Biochemistry
 BIO 460 Experimental Methods in Advanced Genetics
D. Four courses selected from the following: 12 credits
Courses not selected in groups A, B, or C and these additional courses:
 BIO 222 Field Biology
 BIO 240 Biology of Disease
 BIO 314 General Microbiology
 BIO 318 Histology
 BIO 324 Developmental Biology
 BIO 325/ MDT 325 Diagnostic Molecular Biology
 BIO 326 Introduction to Bioinformatics and Genomics
 BIO 327 Molecular Biology
 BIO 332 Advanced Physiology
 BIO 338 Behavioral Biology
 BIO 365 Principles of Neurobiology
 BIO/
 MTH 415 Mathematical Biology
 BIO 420 Comparative Endocrinology
 BIO 425 Computational Molecular Biology
 BIO 428 Plant Physiology
BIO 434 Comparative Physiology
BIO 442 Immunology

E. Required related science courses:
PHY 116 Physics I
PHY 156 Physics II

or (with appropriate mathematics background)
PHY 120 General Physics I
PHY 121 General Physics I Laboratory
PHY 160 General Physics II
PHY 161 General Physics II Laboratory 8 credits
CHM 141 General Chemistry I 3 credits
CHM 121 General Chemistry I Lab 1 credit
CHM 142 General Chemistry II 3 credits
CHM 127 General Chemistry II Lab 1 credit
CHM 250 Organic Chemistry I 4 credits
CHM 256 Organic Chemistry II 4 credits

Electives: 18-28 credits
Total Credits Required: 128

Option II — Biology/Adolescence Education, grades 7-12: no change
Option III — Biology/Bioinformatics

Major Requirements: 82-83 credits

A minimum grade of C is required for a biology course to be used to satisfy a prerequisite for a biology course required for the major requirements for the BS in Biology/Bioinformatics.

A. Required Courses
BIO 205 General Physiology 4 credits
BIO 312 Genetics 4 credits
BIO 322 Evolution 4 credits
BIO 352 Cell Biology 4 credits

or
BIO 360 Ecology 4 credits

B. All of the following courses:
BIO 327 Molecular Biology 4 credits
BIO/CHM 370 Biochemistry I 4 credits
BIO/CHM 376 Biochemistry II 4 credits
BIO 326 Introduction to Bioinformatics and Genomics 4 credits
MTH/BIO 415 Mathematical Biology 4 credits
C. One advanced six-hour laboratory course from the following:

BIO 424 Molecular Biology and Biotechnology Laboratory
BIO 450 Experimental Methods in Animal Physiology
BIO 452 Experimental Methods in Behavioral Biology
BIO 454 Advanced Methods in Cell Biology
BIO 456 Experimental Methods in Ecology
BIO 458 Experimental Methods in Cell Biochemistry
BIO 460 Experimental Methods in Advanced Genetics

D. One elective from the following:

Courses not selected in groups A or C and these additional courses:

BIO 213 Comparative Vertebrate Anatomy
BIO 215 Invertebrate Zoology and Paleontology
BIO 228 Botany
BIO 240 Biology of Disease
BIO 314 General Microbiology
BIO 318 Histology
BIO 324 Developmental Biology
BIO 325/MDT 325 Diagnostic Molecular Biology
BIO 332 Advanced Physiology
BIO 338 Behavioral Biology
BIO 365 Principles of Neurobiology
BIO 372 Cell Biochemistry
BIO 425 Computational Molecular Biology
BIO 428 Plant Physiology
BIO 442 Immunology

E. Required related science courses:

CSC 220 Computers and Programming
CSC 228 Discrete Mathematical Structures
CSC 326 Information Structures
CSC 424 Database Management
PHY 116 Physics I
PHY 156 Physics II

or (with appropriate mathematics background)

PHY 120 General Physics I
PHY 121 General Physics I Laboratory
PHY 160 General Physics II
PHY 161 General Physics II Laboratory
CHM 141 General Chemistry I
CHM 121 General Chemistry I Lab

3 credits
3-4 credits

4 credits
4 credits
4 credits
4 credits

8 credits
3 credits
1 credit
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 142</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHM 127</td>
<td>General Chemistry II Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 250</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHM 256</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electives: 0-4 credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credits Required: 128</td>
<td></td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCE

Engineering Science AS

Core Requirements: 41 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS 100</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENS 110</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td>ENS 220</td>
<td>Introduction to Computer Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENS 241</td>
<td>Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ENS 250</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CSC 126</td>
<td>Introduction to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>MTH 229</td>
<td>Calculus Computer Laboratory</td>
<td></td>
</tr>
<tr>
<td>MTH 230</td>
<td>Calculus I with Pre-Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MTH 231</td>
<td>Analytic Geometry and Calculus I</td>
<td>10</td>
</tr>
<tr>
<td>MTH 232</td>
<td>Analytic Geometry and Calculus II</td>
<td></td>
</tr>
<tr>
<td>MTH 233</td>
<td>Analytic Geometry and Calculus III</td>
<td></td>
</tr>
<tr>
<td>PHY 120</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 121</td>
<td>General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHY 160</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 161</td>
<td>General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 141</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 121</td>
<td>General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Electives: 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credits Required: 60</td>
<td></td>
</tr>
</tbody>
</table>

Engineering Science BS

Pre-Major Requirements: 41 credits

Students beginning the engineering science program as freshmen should complete the following requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS 100</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENS 110</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td>ENS 220</td>
<td>Introduction to Computer Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENS 241</td>
<td>Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ENS 250</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CSC 126</td>
<td>Introduction to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>MTH 229</td>
<td>Calculus Computer Laboratory</td>
<td></td>
</tr>
<tr>
<td>MTH 230</td>
<td>Calculus I with Pre-Calculus</td>
<td></td>
</tr>
<tr>
<td>MTH 231</td>
<td>Analytic Geometry and Calculus I</td>
<td></td>
</tr>
<tr>
<td>MTH 232</td>
<td>Analytic Geometry and Calculus II</td>
<td></td>
</tr>
<tr>
<td>MTH 233</td>
<td>Analytic Geometry and Calculus III</td>
<td>10</td>
</tr>
<tr>
<td>PHY 120</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 121</td>
<td>General Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHY 160</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 161</td>
<td>General Physics II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 141</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 121</td>
<td>General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MTH 330</td>
<td>Applied Mathematical Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 240</td>
<td>Waves and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Probability and an Introduction to Mathematical Statistics</td>
<td></td>
</tr>
<tr>
<td>MTH 331</td>
<td>Applied Mathematical Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>ENS 221</td>
<td>Digital Electronics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENS 310</td>
<td>Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENS 362</td>
<td>Microprocessors</td>
<td>4</td>
</tr>
<tr>
<td>ENS 336</td>
<td>Computer-Aided Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENS 383</td>
<td>Electrical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>ENS 384</td>
<td>Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENS 485</td>
<td>Properties of Materials</td>
<td>4</td>
</tr>
<tr>
<td>ENS 331</td>
<td>Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ENS 450</td>
<td>Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CSC 326</td>
<td>Information structures</td>
<td></td>
</tr>
<tr>
<td>ENS 341</td>
<td>Electrical Network Analysis</td>
<td></td>
</tr>
<tr>
<td>ENS 380</td>
<td>Mechanics of Solids</td>
<td>4</td>
</tr>
</tbody>
</table>

Major Requirements: **62-63 credits**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH 330</td>
<td>Applied Mathematical Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 240</td>
<td>Waves and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Probability and an Introduction to Mathematical Statistics</td>
<td></td>
</tr>
<tr>
<td>MTH 331</td>
<td>Applied Mathematical Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>ENS 221</td>
<td>Digital Electronics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENS 310</td>
<td>Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENS 362</td>
<td>Microprocessors</td>
<td>4</td>
</tr>
<tr>
<td>ENS 336</td>
<td>Computer-Aided Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENS 383</td>
<td>Electrical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>ENS 384</td>
<td>Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENS 485</td>
<td>Properties of Materials</td>
<td>4</td>
</tr>
<tr>
<td>ENS 331</td>
<td>Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ENS 450</td>
<td>Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CSC 326</td>
<td>Information structures</td>
<td></td>
</tr>
<tr>
<td>ENS 341</td>
<td>Electrical Network Analysis</td>
<td></td>
</tr>
<tr>
<td>ENS 380</td>
<td>Mechanics of Solids</td>
<td>4</td>
</tr>
</tbody>
</table>
CSC 332 Operating Systems I
or
ENS 356 Theory of Electromagnetic Radiation
or
ENS 316 Dynamics
ENS 471 Control Systems
ENS 480 Advanced Engineering Design

At least two of the following laboratories:
ENS 309 Basic Measurements Laboratory
or
ENS 359 Mechanical Materials Laboratory
ENS 439 Systems Laboratory
or
ENS 459 Applied Mechanics Laboratory

Four credits of technical electives approved by an engineering science adviser
At least six credits of advanced ENS electives
The total number of ENS credits must be at least 58 as approved by an engineering science adviser.

Computer Engineering Specialization:
Courses recommended as fulfilling the pre-major and major requirements include: CSC 326, ENS 362, ENS 331, ENS 309, CSC 332, ENS 439, ENS 383, or ENS 485; and courses fulfilling the technical electives chosen from among: CSC 330, CSC 430, CSC 435, CSC 480, CSC 482, CSC 490; ENS 341, ENS 420, ENS 422, ENS 432, ENS 446.

Electrical Engineering Specialization:
Courses recommended as fulfilling the pre-major and major requirements include: MTH 331, ENS 331, ENS 356, ENS 309, ENS 362, ENS 341, ENS 439, ENS 383, or ENS 485; and courses fulfilling the technical electives chosen from among: ENS 420, ENS 422, ENS 432, ENS 446, ENS 434, ENS 436, ENS 438, ENS 359, ENS 459.

Mechanical Engineering Specialization:
Courses recommended as fulfilling the pre-major and major requirements include: ENS 316, MTH 331, ENS 380, ENS 362, ENS 450, ENS 359, ENS 384, or ENS 485, ENS 459; and courses fulfilling the technical electives chosen from among: ENS 350, ENS 410, ENS 416, ENS 422, ENS 434, ENS 436, ENS 438, ENS 470, ENS 309, ENS 439.

Electives: 0-7 credits
Total Credits Required: 133
ENGLISH
English BA

Changes to major requirements in three options.

Writing Option
Students majoring in English with an option in writing must complete 36 credits of courses in English beyond the general education requirements. These courses must be at the 300 or 400 level except up to eight credits may be in 200-level ENL writing courses. The 36 credits must include 20 credits in such writing courses and 16 additional credits, 12 of which must be in Literature at the ENL level, and the remaining four of which must be in Literature (at the ENH or ENL level) or in Linguistics (ENL). Literature courses must be from at least two of the Coverage Areas listed under Literature Option.

Dramatic Literature Option
At least 24 credits of courses in dramatic literature (DRA 260, 261, 460; and DRA/ENG, DRA/ENL, DRA/FRN, or DRA/SPN courses) including at least eight credits of courses at the 300 or 400 level. The 24 credits must include at least one course in dramatic literature before 1800 and at least one course in dramatic literature after 1800. At least 12 credits in dramatic arts courses including at least three credits at the 300 or 400 level. The 12 credits must include courses in at least two areas of dramatic arts (production, acting, directing, set design, lighting and costume design, or technical theater). ENL 302 also may be included in this second option.

Literature Option
Students majoring in English with an option in literature must complete 36 credits of courses in English beyond the general education requirements. Up to eight credits (of nine courses) may be in ENL writing courses and/or linguistics courses and/or ENL 302. With permission of the chairperson, four credits may be an ENH 200-level course. The remaining courses must be ENL courses. Students must satisfy the following requirements within the 36 credits:

A. Literary Approaches
One course from each of the following:
1. A literary period or movement prior to 1800 or Shakespeare
2. A literary period or movement after 1800
3. A specific literary genre
4. A major figure

B. Coverage Areas
One course from each of the following:
1. English literature
2. American literature
3. Literature translated into English
4. Literature written by women, American minorities, or Third World authors

C. At least two (of the nine) courses (eight credits) must deal primarily with material written before 1800 — no change

The same course may be used to satisfy more than one of these requirements.

HISTORY

History BA

Major Requirements: 36 credits
Twenty-four credits of history courses at the 200 level or higher, of which at least three courses must be at the 300 level including:

- At least one history course designated as pre-1700 history
- At least one history course designated as modern European history
- At least one history course designated as United States history
- At least one history course from a geographical area other than Europe or the United States, designated as World history

A 200-level geography course may be used to meet this 24-credit requirement. At most, one independent study course may be used to satisfy this requirement. The cumulative grade point average in history courses must be 2.0 or higher for graduation.

MATHEMATICS

Mathematics BS

Major Requirements: 36 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH 330</td>
<td>Applied Mathematical Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>or MTH 334</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MTH 338</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MTH 339</td>
<td>Applied Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MTH 341</td>
<td>Advanced Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Probability Theory and Introduction to Mathematical Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

Four additional mathematics courses (**16 credits**) at the 300 or 400 level chosen with the approval of an adviser.
INDEX

NEW UNDERGRADUATE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 230</td>
<td>Introduction to Language</td>
<td>3</td>
</tr>
<tr>
<td>MKT 360</td>
<td>Internet Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SPN 352</td>
<td>Studies in Spanish American Literature and Culture I</td>
<td>3</td>
</tr>
<tr>
<td>SPN 452</td>
<td>Studies in Spanish American Literature and Culture II</td>
<td>3</td>
</tr>
<tr>
<td>SPN 359</td>
<td>Studies in Peninsular Spanish Literature and Culture I</td>
<td>3</td>
</tr>
<tr>
<td>SPN 459</td>
<td>Studies in Peninsular Spanish Literature and Culture II</td>
<td>3</td>
</tr>
</tbody>
</table>

CHANGES IN COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 114</td>
<td>Introduction to Accounting I</td>
<td>4</td>
</tr>
<tr>
<td>CIN 210</td>
<td>Film Theory</td>
<td>4</td>
</tr>
<tr>
<td>CIN 220</td>
<td>Film History</td>
<td>4</td>
</tr>
<tr>
<td>CSC/</td>
<td>Discrete Mathematical Structures for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>CSC 382</td>
<td>Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>CSC 450</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CSC 470</td>
<td>Introductory Computer Graphics</td>
<td>5</td>
</tr>
<tr>
<td>EDC 217</td>
<td>Affective Development of the Child</td>
<td>5</td>
</tr>
<tr>
<td>EDC 218</td>
<td>Language Development through an Integrated Curriculum</td>
<td>5</td>
</tr>
<tr>
<td>EDC 350</td>
<td>Fieldwork in Preschool Classrooms</td>
<td>5</td>
</tr>
<tr>
<td>EDC 360</td>
<td>Workshop in Social Studies and the Expressive Arts</td>
<td>6</td>
</tr>
<tr>
<td>EDC 440</td>
<td>Student Teaching in Kindergarten and Early Primary Classrooms</td>
<td>6</td>
</tr>
<tr>
<td>ELT 101</td>
<td>Introduction to Measurements and Instrumentation (Formerly ENT 101)</td>
<td>6</td>
</tr>
<tr>
<td>ELT 224</td>
<td>Electrical Circuit Analysis</td>
<td>6</td>
</tr>
<tr>
<td>ENL 302</td>
<td>Oral Interpretation of Literature</td>
<td>6</td>
</tr>
<tr>
<td>ENS 100</td>
<td>Introduction to Engineering</td>
<td>6</td>
</tr>
<tr>
<td>ENS 110</td>
<td>Engineering Graphics (Formerly ENT 110)</td>
<td>7</td>
</tr>
<tr>
<td>ENS 220</td>
<td>Introduction to Computer Engineering</td>
<td>7</td>
</tr>
<tr>
<td>ENS 250</td>
<td>Engineering Mechanics</td>
<td>7</td>
</tr>
<tr>
<td>ENS 241</td>
<td>Electrical and Electronic Circuits (Formerly ENS 340)</td>
<td>7</td>
</tr>
<tr>
<td>ENS/</td>
<td>Theory of Electromagnetic Radiation</td>
<td>7</td>
</tr>
<tr>
<td>ENS 471</td>
<td>Control Systems (Formerly ENS 370)</td>
<td>7</td>
</tr>
<tr>
<td>ENS/</td>
<td>Properties of Materials (Formerly ENS/PHY 385)</td>
<td>7</td>
</tr>
<tr>
<td>ENS 420</td>
<td>Analog and Digital Systems Design</td>
<td>7</td>
</tr>
<tr>
<td>ENS 422</td>
<td>Signals and Noise</td>
<td>7</td>
</tr>
<tr>
<td>ENS 331</td>
<td>Digital Signal Processing (Formerly ENS 430)</td>
<td>8</td>
</tr>
<tr>
<td>ENS 432</td>
<td>Digital and Analog Communication Systems</td>
<td>8</td>
</tr>
<tr>
<td>ENS 431</td>
<td>Electrical Network Analysis (Formerly ENS 440 Network Theory)</td>
<td>8</td>
</tr>
<tr>
<td>ENS 436</td>
<td>Electric Energy Systems</td>
<td>8</td>
</tr>
<tr>
<td>HST 213</td>
<td>Chinese Civilization</td>
<td>8</td>
</tr>
<tr>
<td>HST 290</td>
<td>The West and the World: Africa Encounters Europe</td>
<td>8</td>
</tr>
<tr>
<td>HST 291</td>
<td>The West and the World: The Americas Encounter Europe</td>
<td>8</td>
</tr>
<tr>
<td>HST 292</td>
<td>The West and the World: Cross-Cultural Encounters in the Medieval World</td>
<td>8</td>
</tr>
<tr>
<td>MGT 210</td>
<td>Management Process (Formerly MGT 310)</td>
<td>8</td>
</tr>
</tbody>
</table>
CHANGES IN DEGREE REQUIREMENT

Biology BS ... 9
Engineering Science AS ... 13
Engineering Science BS .. 13
English BA ... 16
History BA ... 17
Mathematics BS .. 17
Appendix i

The “Grandfather” Clause

Requirements in this Catalog supplement were approved effective fall 2004. The “Grandfather” clause is designed for students who matriculated in a degree program, major, or curriculum prior to that semester. This provides that a student may meet degree requirements in effect the semester of his/her matriculation in a particular program, curriculum, or major, provided the student has not had an interruption in matriculation exceeding four consecutive fall and spring semesters.

Students changing major or curriculum are subject to the requirements in effect the year of the change. For general education degree requirements only, students may choose to follow requirements of the Catalog in effect the first time they matriculated at the College, provided that no more than ten years have elapsed from initial matriculation to the change of major or curriculum. Students must notify the Registrar in writing that they are exercising this option.

Students who hold the associate in arts degree, students who hold the associate in science degree, or students who hold a baccalaureate degree from an accredited post-secondary institution are considered to have completed general education requirements. Students who hold the associate in applied science degree must complete the general education requirements specified by further degrees.