Open menu button Close menu button

Li Ge

Professor

Professor Ge's current research interests include nonlinear and non-Hermitian phenomena in optics and photonics. He has published more than 150 journal articles and conference proceedings in top scientific journals such as Science, Nature, Nature Physics, Nature Photonics, and Physical Review Letters, with a total citation of over 10000.

Professor Ge received an NSF CAREER award in 2019 and a Dolphin Award for Outstanding Scholarly Achievements in 2023. He was elected a fellow of Optica (formerly OSA) in 2023. He is currently on the editorial board of Physical Review B, and he has taken editorial roles at PNAS, Applied Physics Letters, and Photonics Research. He has also reviewed articles and proposals for over 50 journals and funding agencies worldwide.

Before joining CSI in 2013, Professor Ge was a postdoctoral associate in the Department of Electrical Engineering at Princeton University.  He received his PhD in Physics from Yale University in 2010, and his thesis focused on laser physics in complex and disordered media, including wave-chaotic lasers and random lasers. He was the co-discoverer of Coherent Perfect Absorbers, which was featured in media such as BBC News, New York Times, Scientific American, Nature, and Nature Photonics.

Degrees

PhD, Yale University

BS, Peking University

Scholarship and Publications

In preparation and preprints

104. “Modern semiclassical laser theory with applications to micro and nanolasers,” H. E. Tureci, Li Ge, and A. D. Stone, solicited by Rev. Mod. Phys.

103. “Linear optical analogy of the fermionic Kitaev chain and Majorana bound states, ” L. Ge, J. Rivero, and L. Feng, submitted to Phys. Rev. Lett. (2024).

102. "Enhanced Frequency Conversion on Parity-Time Lines," J. Hou et al., submitted to Phys. Rev. Lett. (2024).

101. "Integrated Preparation and Manipulation of Flying Photon Qudits," H. Zhao et al., submitted to Phys. Rev. Lett. (2024).

100. “Topological Valley Hall Polariton Condensation,” K. Peng et al., submitted to Nature Materials (2024).

99. “Pseudo-Hermitian Transition in Degenerate Nonlinear Four-Wave Mixing,” Li Ge and  W. Wan, arXiv:1603.05624 (2016). 

98. “Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates,” Li Ge, A. Nersisyan, B. Oztop, and H. E. Tureci, arXiv:1311.4847 (2014). 

 

Published

97. “Non-Hermitian systems with a real spectrum and selective skin effect,” L. Ge, Innov. Discov. 1, 4 (2024).

96. “Effective size of a parity-time symmetric dimer,” L. Ge, Phys. Rev. A 109, 023513 (2024)

95. “Tracking exceptional points above the lasing threshold,” K. Ji et al., Nature Commun.14, 8304 (2023).

94. “Robust zero modes in non-Hermitian systems without global symmetries,” J. Rivero, C. Fleming, B. Qi, L. Feng, and L. Ge*, Phys. Rev. Lett. 131, 223801 (2023).

93. “Linear localization of zero modes in weakly coupled non-Hermitian reservoirs,” B. Qi and L. Ge, Adv. Physics Res. 2023, 202300066 (2023).

92. “Non-Hermitian gauged laser arrays with localized excitations: Anomalous threshold and generalized principle of selective pumping,” L. Ge*, Z. Gao, and L. Feng, Phys. Rev. B 108, 104111 (2023).

91. “Two-Dimensional Reconfigurable Non-Hermitian Gauged Laser Array,” Z. Gao, X. Qiao, M. Pan, S. Wu, J. Yim, K. Chen, B. Midya, L. Ge, and L. Feng, Phys. Rev. Lett. 130, 263801 (2023). [Editor’s Suggestion]

90. “Analysis of Dirac exceptional points and their isospectral Hermitian counterparts,” J. Rivero, L. Feng, and Li Ge*, Phys. Rev. B, 107.104106 (2023). 

89. "Imaginary gauge transformation in momentum space and Dirac exceptional point," J. Rivero, L. Feng, and Li Ge*, Phys. Rev. Lett. 129, 243901 (2022). 

88. "Spin–orbit microlaser emitting in a four-dimensional Hilbert space," Z. Zhang et al., Nature 612, 246 (2022). (Nature Link)

87. “Self-Induced Transparency in a Perfectly Absorbing Chiral Second-Harmonic Generator,” J. Hou et al., PhotoniX 3, 22 (2022).

86. "Exceptional Points with Memory in a Microcavity Brillouin Laser," Y. Chen, Li Ge*, W. Wan*, et al., Optica 9, 971 (2022).

85. "Vortex radiation from a single emitter in a chiral plasmonic nanocavity," X. Y. Wang et al., Nanophotonics 11, 1905 (2022).

84. “Direct observation of zero modes in a non-Hermitian optical nanocavity array,” F. Hentinger et al., Photonics Research 10, 574 (2022). 

83. “Direct Observation of Chaos Assisted Tunneling in Silicon Microdisks,” S. Wang, Li Ge*, Q. Song*, et al., Light Sci. Appl. 10, 135 (2021).

82. "Insight of the Green's function as a defect state in a boundary value problem," J. Rivero and Li Ge, Phys. Rev. B 103, 195342 (2021).

81. “Non-Hermiticity generated active photonic resonances with a unique quantization condition,” J. Rivero, M. Pan, K. G. Makris, L. Feng*, and Li Ge*, Phys. Rev. Lett. 126, 163901 (2021).

80. “Extraordinary fast forward and backward light in transparent non-Hermitian systems,” L. Zhang, L. Ying, Li Ge*, W. Zhao, W Zhang*, Laser Photon. Rev. 2021, 2000204 (2021).

79. “Chiral symmetry in non-Hermitian systems: Product rule and Clifford algebra,” J. Rivero and Li Ge, Phys. Rev. B 103, 014111 (2021).

78. “Pseudo-chirality: a manifestation of Noether’s theorem in non-Hermitian systems,” J. Rivero and Li Ge, Phys. Rev. Lett. 125, 083902 (2020).

77. “Twisted light on a chip,” Li Ge, Science 368, 707 (2020). 

76. “Origin of robust exceptional points: Restricted bulk zero mode,” J. Rivero and Li Ge, Phys. Rev. A 101, 063823 (2020).

75. “Revealing the missing dimension at an exceptional point,” X. Y. Wang, Li Ge*, J. Zhu*, R. M. Ma*, et al., Nature Phys. 16, 571–578 (2020).

74. "Ultrafast control of vortex microlasers," C. Huang, Li Ge*, Y. Kivshar*,  and Q. Song*, et al., Science 367, 1018 (2020). 

73. “Synthetic PT and anti-PT symmetry in a single microcavity,” F. Zhang, Y. Feng, Li Ge*, and W. Wan*, Phys. Rev. Lett. 124, 053901 (2020).

72. (Invited review) “Parity-Time Symmetry Synthetic Lasers: Physics and Devices,” B. Qi, H. Chen, Li Ge*, P. Berini*, R. Ma*, Adv. Opt. Mat. 7, 1900694 (2019).

71. “Time-reversal invariant scaling of light propagation in one-dimensional non-Hermitian systems,” J. Rivero and Li Ge, Phys. Rev. A 100, 023819 (2019).

70. “All-optical control of lead halide perovskite microlasers,” N. Zhang, Y. Fan, K. Wang, Z. Gu, Y. Wang, Li Ge*, S. Xiao*, and Q. Song*, Nature Commun. 10, 1770 (2019).

69. (Invited focus article) “Quantum chaos in optical microcavities: A broadband application,” Li Ge, EPL 123, 64001 (2018).

68. “Transporting optical chirality through the dynamical barriers in optical microcavities,” S. Liu et al., Laser Photon. Rev. 2018, 1800027 (2018).

67. “Defect states emerging from a non-Hermitian flat band of photonic zero modes,” B. Qi, L. Zhang, and Li Ge*, Phys. Rev. Lett. 120, 093901 (2018).

66. “Non-Hermitian lattices with a flat band and polynomial power increase [Invited],” Li Ge, Photonics Research 6, A10-A17 (2018).

65. “Stable Switching among High-Order Modes in Polariton Condensates,” Y. Sun et al., Phys. Rev. B 97, 045303 (2018).

64. (Invited review) “Non-Hermitian photonics based on parity-time symmetry,” L. Feng, R. El-Ganainy, and Li Ge, Nature Photonics 11, 752-762 (2017) [See also the editorial “Turning loss into gain,” Nature Photonics 11, 741 (2017)].

63. (Editorial) “Optical microcavities: New understandings and developments,” Li Ge, L. Feng, and H. G. L. Schwefel,  Photonics Research 5, OM1-OM3 (2017).

62. “Observation of gain spiking and nonlinear beating of optical frequency comb in a Microcavity,” Y. Zheng et al., Opt. Express 25, 31140-31147 (2017).  

61. “Constructing the scattering matrix for optical microcavities as a nonlocal boundary value problem,” Li Ge, Photonics Research 5, B20 (2017).

60. “Quasi parity-time symmetric microdisk laser,” N. Zhang et al., Laser Photonics Rev. 1700052 (2017).

59. “Optical fluxes in coupled PT-symmetric photonic structures,” Li Ge, K. G. Makris, and L. Zhang, Phys. Rev. A 96, 023820 (2017).

58. “Anomalous minimum and scaling behavior of localization length near an isolated flat band,” Li Ge, Ann. Phys. (Berlin) 527, 201600182 (2017). 

57. “Condensation of thresholds in multimode microlasers,” Li Ge, H. Cao, and A. D. Stone, Phys. Rev. A 95, 023842 (2017).

56. “Symmetry, stability, and computation of degenerate lasing modes,” D. Liu et al., Phys. Rev. A 95, 023835 (2017).

55. “Symmetry-protected zero-mode laser with a tunable spatial profile,” Li Ge, Phys. Rev. A 95, 023812 (2017).

54. “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Q.-T. Cao et al., Phys. Rev. Lett. 118, 033901 (2017).

53. “Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT-symmetric periodic structure,” Li Ge and L. Feng, Phys. Rev. A 95, 013813 (2017).

52. “Controlling mode competition by tailoring the spatial pump distribution in a laser,” A. Cerjan et al., Opt. Express 24, 26006 (2016).

51. “Optical reciprocity induced symmetry in photonic heterostructures and its manifestation in scattering PT symmetry breaking,” Li Ge and L. Feng, Phys. Rev. A 94, 043836 (2016).

50. “Metawaveguide for Asymmetric Interferometric Light-Light Switching,” H. Zhao et al., Phys. Rev. Lett. 117, 193901 (2016).

49. “Non-Hermitian engineering of single mode two dimensional laser arrays,” M. H. Teimourpour, Li Ge, D. N. Christodoulides, and R. El-Ganainy, Sci. Rep. 6, 33253 (2016).

48. “Anomalous parity-time symmetry transition away from an exceptional point,” Li Ge, Phys. Rev. A 94, 013837 (2016).

47. “Nonlinear modal interactions in parity-time (PT) symmetric lasers,” Li Ge and R. El-Ganainy, Sci. Rep. 6, 24889 (2016).

46. “Bosonic condensation and disorder-induced localization in a flat band,” F. Baboux et al., Phys. Rev. Lett. 116, 066402 (2016).

45. “Controlling a microdisk laser by local refractive index perturbation,” S. F. Liew, Li Ge, B. Redding, G. S. Solomon, and H. Cao, Appl. Phys. Lett. 108, 051105 (2016).

44. “Interaction induced mode switching in microlasers,” Li Ge, D. Liu, S. G. Johnson, S. Rotter, H. E. Tureci, A. Cerjan, H. Cao, A. D. Stone, Optics Express 24, 41 (2016).

43. “Scattering in PT and RT symmetric multimode waveguides: generalized conservation laws and spontaneous symmetry breaking beyond one dimension,” Li Ge, K. Makris, D. Christodoulides, and L. Feng, Phys. Rev. A 92, 062135 (2015).

42. “Selectively excitation of laser modes by controlling modal interactions,” Li Ge, Optics Express 23, 30049 (2015).

41. “Parity-Time symmetry in a flat band system,” Li Ge, Phys. Rev. A 92, 052103 (2015).

40. “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” N. L. Aung, Li Ge, O. Malik, H. E. Tureci, and C. Gmachl, App. Phys. Lett. 107, 151106 (2015).

39. “Supersymetric laser arrays,” R. El-Ganainy, Li Ge, M. Khajavikhan and D. Christodoulides, Phys. Rev. A 92, 033818 (2015).

38. “Inverse Vernier Effect in lasers,” Li Ge and H. E. Tureci, Phys. Rev. A 92, 013840 (2015).

37. “Optical resonances in rotating dielectric microcavities of deformed shape,” R. Sarma, Li Ge, and H. Cao, JOSA B 32, 1736-1742 (2015).

36. “Pump-Controlled Modal Interactions in Microdisk Lasers,” S. F. Liew, Li Ge, B. Redding, G. S. Solomon, H. Cao, Phys. Rev. A 91, 043828 (2015).

35. “Rotation-induced Asymmetry of Far-field Emission from Optical Microcavities,” Li Ge, R. Sarma, and H. Cao, Optica 2, 323-328 (2015).

34. “Rotating optical microcavities with broken chiral symmetry,” R. Sarma, Li Ge, J. Wiersig, and H. Cao, Phys. Rev. Lett. 114, 53903 (2015).

33. “Anomalous transient amplification of waves in non-normal photonic media,” M. K. Makris, Li Ge, and H. E. Tureci, Phys. Rev. X 4, 041044 (2014).

32. “Enhancement of laser power-efficienty by control of spatial hole burning interactions,” Li Ge, O. Malik, and H. E. Tureci, Nature Photonics 8, 871-875 (2014).

31. “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, Li Ge, M. K. Makris, A.D. Stone, J.M. Melenk, S. G. Johnson, and S. Rotter, Phys. Rev. A 90, 023816 (2014).

30. “Parity-time symmetry breaking beyond one dimension: the role of degeneracy,” Li Ge and A. D. Stone, Phys. Rev. X 4, 031011 (2014).

29. “Rotation-induced Mode Coupling in Open Wavelength-scale Microcavities,” Li Ge, R. Sarma, and H. Cao, Phys. Rev. A 90, 013809 (2014).

28. “Active control of emission directionality of semiconductor microdisk lasers,” S. F. Liew, B. Redding, Li Ge, G. S. Solomon, and H. Cao, Appl. Phys. Lett. 104, 231108 (2014).

27. “Exceptional points and lasing self-termination in photonic molecules,” R. El-Ganainy, M. Khajavikhan, and Li Ge, Phys. Rev. A 90, 013802 (2014).

26. “High-order scattering and multipath interference in wavelength-scale optical cavities,” B. Redding, Li Ge, Q. H. Song, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 112, 163902 (2014).

25. “Breaking of PT-symmetry in bounded and unbounded scattering systems,” P. Ambichl, K. G. Makris, Li Ge, Y. D. Chong, A. D. Stone, and S. Rotter, Phys. Rev. X 3, 041030 (2013).

24. “Antisymmetric PT-photonic structures with balanced positive and negative index materials,” Li Ge and H. E. Tureci, Phys. Rev. A 88, 053810 (2013).

23. “Controlling multimode coupling by boundary wave scattering,” Li Ge, Q. H. Song, B. Redding, A. Eberspacher, J. Wiersig, and H. Cao, Phys. Rev. A 88, 043801 (2013).

22. “Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes,” Q. H. Song, Li Ge, J. Wersig, and H. Cao, Phys. Rev. A 88, 023834 (2013).

21. “Gain-tunable optomechanical cooling in a laser cavity,” Li Ge, S. Faez, F. Marquardt, and H. E. Tureci, Phys. Rev. A 87, 053839 (2013).

20. “Extreme output sensitivity to subwavelength boundary deformation in microcavities,” Li Ge, Q. H. Song, B. Redding, and H. Cao, Phys. Rev. A 87, 023833 (2013).

19. “Local chirality of optical waves in ultrasmall resonators,” B. Redding, Li Ge, Q. H. Song, J. Wiersig, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 108, 253902 (2012).

18. “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Q. H. Song, Li Ge, B. Redding, C. Zeng, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 108, 243902 (2012).

17. “Pump-induced exceptional points in lasers above threshold,” M. Liertzer, Li Ge, C. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, Phys. Rev. Lett. 108, 173901 (2012).

16. “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Li Ge, Y. D. Chong, and A. D. Stone, Phys. Rev. A 85, 023802 (2012).

15. “Directional waveguide coupling from a wavelength-scale deformed microdisk laser,” B. Redding, Li Ge, G. S. Solomon, and H. Cao, App. Phys. Lett. 100, 061125 (2012).

14. “Steady-state ab initio laser theory for N-level lasers,” A. Cerjan, Y. D. Chong, Li Ge, and A. D. Stone, Optics Express 20, 474-488 (2012).

13. “Wavelength-scale deformed microdisk lasers,” Q. H. Song, Li Ge, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, A. Eberspancher, W. Fang, G. S. Solomon, and Hui Cao, Phys. Rev. A 84, 063843 (2011).

12. “Unconventional modes in lasers with spatially varying gain and loss,” Li Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, Phys. Rev. A 84, 023820 (2011).

11. “Time-reversed lasing and control of absorption,” W. Wan, Y. D. Chong, Li Ge, H. Noh, A. D. Stone, and H. Cao, Science 331, 889-892 (2011).

10. “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Y. D. Chong, Li Ge, and A. D. Stone, Phys. Rev. Lett. 106, 093902 (2011).

9. “Modes of random lasers,” J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, Li Ge, L. Labonte, P. Sebbah, A. D. Stone, H. E. Tureci, and C. Vanneste, Advances in Optics and Photonics 3, 88-127 (2011).

8. “Steady-state ab initio laser theory: generalizations and analytic results,” Li Ge, Y. D. Chong, and A. D. Stone, Phys. Rev. A 82, 063824 (2010).

7. “Directional laser emission from a wavelength-scale chaotic microcavity,” Q. Song, Li Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, Phys. Rev. Lett. 105, 103902 (2010).

6. “Coherent perfect absorbers: time-reversed lasers,” Y. D. Chong, Li Ge, H. Cao, and A. D. Stone, Phys. Rev. Lett. 105, 053901 (2010).

5. “Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems,” J. Andreasen, C. Vanneste, Li Ge, and H. Cao, Phys. Rev. A 81, 043818 (2010).

4. “Ab initio self-consistent laser theory and random lasers,” H. E. Tureci, A. D. Stone, Li Ge, S. Rotter, and R. J. Tandy, Nonlinearity 22 C1-C18 (2009).

3. “Strong interactions in multimode random lasers,” H. E. Tureci, Li Ge, S. Rotter, and A. D. Stone, Science 320, 643-646 (2008).

2. “Quantitative verification of ab initio self-consistent laser theory,” Li Ge, R. J. Tandy, A. D. Stone, and H. E. Tureci, Optics Express 16, 16895-16902 (2008).

1. “Theory of the spatial structure of nonlinear lasing modes,” H. E. Tureci, A. D. Stone, and Li Ge, Phys. Rev. A 76, 013813 (2007). 

Professor Li Ge

Contact Information

Office: Building 1N Room 223
Fax: 718.982.2830